
Abstract

A robotic HMMWV (a.k.a. “humvee”) drives
autonomously offroad at speeds up to 35 km/h (10 m/s,
20 mph). Key features of the implementation that
enable driving at these speeds are (1) planning the next
20 m with dynamically feasible trajectories, and (2)
increasing the lateral clearance to obstacles at higher
speeds. Clothoid trajectories are used in planning the
vehicle’s immediate path. The speed-indexed clearance
requirement improves the safety margin for the vehicle
over a range of speeds while retaining the ability to
maneuver in close quarters when necessary.
Keywords: Offroad driving, Path planning, Obstacle
Avoidance, Vehicle Control

1 Introduction
Two of the challenges facing offroad autonomous
driving systems are detecting obstacles in time to
respond and driving as fast as the terrain allows. While
sensing capabilities are being developed in other
efforts, the focus of this work is to drive the vehicle
offroad at relatively high speeds.

The NIST HMMWV (Highly Mobile Multipurpose
Wheeled Vehicle, Figure 1) drives on benign terrain,
where the obstacles are reliably detected by the
vehicle's sensors. In the work reported by this paper,

the vehicle drives at 35 km/h on rolling grass-covered
meadows where the only obstacles were large trees and
shrubs. The vehicle is commanded to follow a route
given by a sequence of GPS coordinates a few hundred
meters apart. As the vehicle drives, it repeatedly plans
an obstacle-free path to follow the commanded route in
real time using data sensed while the vehicle proceeds.

The present approach has been in use for over a
year at NIST. It has been adopted by the Office of the
Secretary of the Defense Demo III UGV (Unmanned
Ground Vehicle) program and was demonstrated at the
Demo III A (alpha) field trials.

The first main problem the present work addresses
is that latencies and cycle rates of sensing and control
can lead to instabilities. Clothoid trajectories provide a
reliable method for representing the vehicle’s path for
the next few seconds of driving. The clothoid paths
used are dynamically feasible trajectories that account
for the initial steering angle and the maximum turn rate
of the steering mechanism.

The second main problem is that when high speed
driving was attempted with straight-line path
segments, the vehicle was brushing past trees at
35 km/h (10 m/s). This issue is addressed by
maintaining appropriate lateral clearance to obstacles
given planned vehicle speed. Vehicle speed and lateral
clearance to obstacles are considered together by the
path planner as it plans both steering and speed in the
vehicle’s trajectory to avoid obstacles.

The impact of this work is that the sensorimotor
integration and control requirements for driving
offroad at high speeds have been met in anticipation of
future advances in terrain sensing and interpretation
capabilities.

2 Related Work
Many previous efforts have accomplished high-speed
driving on roads [0], [0], [0]. These onroad behavior
generators deliberately exploit road characteristics by
using explicit models of roads. Current
implementations for onroad driving consist primarily
of lane detection and following. Onroad obstacle
avoidance is in early stages of development. It has so
far been limited to interacting with other vehicles
traveling in the same direction as the autonomous
vehicle. In contrast, offroad driving implementations

Figure 1: The NIST HMMWV is actuated and
instrumented with a laser range scanner, inertial sensors,
and GPS.
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consist of detecting and avoiding arbitrary obstacles in
an unstructured environment.

Many approaches to onroad driving use several
independent specialized behavior generators and then
combine their results with some arbitration scheme. In
contrast, the present work fuses all information in the
world model and generates behavior with a single
planner for each planning level of detail. In addition,
our planning methodology is not limited to clothoids,
and more sophisticated models can be accommodated.
This issue becomes crucial for handling challenging
situations, such as slippery terrain, in which clothoids
would provide poor approximations to the trajectories
the vehicle will exhibit. The key fact that enables the
use of models more complex than clothoids is that our
approach does not rely on merging behaviors
represented by a fixed list of clothoidal or circular path
segments.

Previous offroad efforts have delivered impressive
results [0], [0], [0], but none has focused specifically
on driving as fast as possible by selecting relatively
benign terrain.

The fastest previous results driving offroad have
been delivered by the PRIMUS (PRogram of
Intelligent Mobile Unmanned Systems) program,
which recently demonstrated offroad autonomous
driving up to 25 km/h with a small tracked vehicle, the
Wiesel 2 [0]. Path following and obstacle avoidance
capabilities similar to the present work were displayed.
A scanning LADAR (LAser Detection and Ranging)
range imager similar to the one used on the NIST
HMMWV, but faster (4 Hz), was used to detect
obstacles. Because it is a tracked vehicle, Wiesel 2 has
the ability to drive over obstacles that the HMMWV
must avoid. Additionally, the sensing rate being 4
times faster gave the PRIMUS vehicle 4 times more
opportunities to detect an obstacle in the same amount
of time.

Kelly [0] provides an excellent analysis of the
challenges offered by high speed offroad driving and a
detailed solution. However, it has never run a real
vehicle at high speed in real time.

The present work focuses on performing as much
of the necessary analysis as possible offline in order to
minimize the computations required online.

3 Approach
The mobility software architecture is sketched in
Figure 3. The mobility software is designed in
accordance with the NIST RCS (Real-time Control
System) Reference Model Architecture. [0] [0] The
focus of the present work is the AM (Autonomous
Mobility) Planner/Executor. Plans at higher levels are
provided from mission plans and Vehicle-level
subsystems. Obstacle locations and the vehicle’s
position and orientation are provided by onboard
sensors. These data and plans are integrated in the
world model. AM planning takes place in a local
vehicle reference frame, and the planned path is
followed by the Path Traveler.

The AM Planner is presented a path by the Vehicle
Level Mobility Planner based on the best information
available to it. This is augmented with the latest
Subsystem level obstacle map, based on data
integrated from the range camera (Figure 2 and Figure
4) vehicle odometry, GPS (Global Positioning
System), and inertial sensors. Obstacle detection and

Figure 2: The LADAR range camera scans over its field
of view in about 0.5 s, collecting 8192 range
measurements that can be treated as a range image or as
a collection of 3D points.

Figure 3: The Mobility software architecture is
composed of levels and functional divisions. Time
horizon increases at higher levels. SPWM (Sensory
Processing and World Modeling) modules, on the left,
interpret sensor data in the context of the vehicle’s
current situation and update the world model. BG
(Behavior Generation) modules make, execute, and
monitor plans using the world model. This paper
primarily focuses on the highlighted AM
Planner/Executor module.



terrain analysis are based on data from the time-of-
flight scanning LADAR range camera [0]. The range
data and vehicle position and attitude are integrated in
a North-oriented reference frame (Figure 5).

These data are transformed into a vehicle-oriented
local coordinate frame whose origin is located at the
position where the vehicle is predicted to be when it
begins to follow the path that is being planned (Figure
6) [0]. This local map covers 50x50 m, with each cell
0.4x0.4 m. A large set of paths the vehicle is capable of
following are precalculated off-line (Figure 7). Often
only < 10% of these edges are searched in each online
planning cycle because only those that meet the initial
conditions are considered.

AM (Autonomous Mobility) path planning selects
the lowest-cost obstacle-free path among these. Part of
the computations are performed offline, and part are

Figure 4: Obstacles are detected in range data by
sweeping up each column of pixels in the range data in
search of range discontinuity. Positive obstacles present
clusters of similar range. Negative obstacles produce
range gaps.

Figure 5: A north-oriented obstacle map (a) integrates
data over time. A classified LADAR image (b) shows
ground on which the vehicle can drive, obstacles to avoid,
and cover under which the vehicle could be concealed
from aerial view.
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Figure 6: The autonomous mobility level accumulates
obstacles (red) and cover in a scrolling north-oriented
map. The vehicle’s path is planned in a vehicle-oriented
map that is located where it is predicted that the vehicle
will begin following the path that is being planned.

Figure 7: This vehicle-oriented “ego-graph” shows the
precomputed paths that are searched during online path
planning. The first 20 m are densely-connected with
smooth trajectories that are dynamically feasible. For
clarity, only those for a single initial steering angle
(turned to the right) are shown. The last 30 m are
connected by straight lines. The complete set of paths

contains 11x175 (over 15 million) trajectories in a graph
of approximately 4000 edges, and most of the edges are
in the first 20 m.
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performed online. Offline, a trajectory-to-cell table is
calculated that relates each path segment to the local
vehicle-oriented map cells through which it passes.
Each path segment has a width to account for the
vehicle’s width and some clearance. The trajectory-to-
cell relation is inverted and is represented by a cell-to-
trajectory table. Online, the cell-to-trajectory table is
used to discover which path segments are blocked by
obstacles (Figure 8). A path segment is clear only if it
is completely free of obstacles. Each obstacle’s cell
location is looked up in the cell-to-trajectory table to
determine which path segments are blocked by that
obstacle. The online planning runs at 4 Hz.

3.1 Clothoidal paths

Simple straight-line segments worked at low speeds,
but were unstable at high speeds. Latencies and
discretization contributed to the problem. A key
component of the solution is planning the first few

seconds of behavior with paths that are dynamically
feasible given the response characteristics of the
steering mechanism. The dynamic feasibility of the

paths enables the vehicle to follow the paths more
closely. Therefore the tolerances on path clearance can
be tighter.

The paths extending 20 m from the vehicle consist
of sequences of clothoidal segments. These paths were
generated by simulating the vehicle trajectories
resulting from a sequence of steering rate commands.
They were generated for a range of initial steering
angles and a range of vehicle speeds (Figure 9). A
clothoidis a curve whose curvature varies linearly with
arc-length,i.e., a constant curvature plus a constant

rate of change of curvature: ,

where is the curvature,r is the radius of curvature,
and s is distance traveled. Clothoids correspond to
changing the steering angle smoothly at constant
speed. Constant curvature with no change

represents a fixed angle of the

steering wheels. Nonzeroc1 represents turning the
steering wheels at a constant rate. The model includes
the limits on steering rate, which is limited by the
speed of the steering wheel actuator. The model also
includes soft limits on steering angle as a function of
vehicle speed. In addition the model includes
understeer (in which the vehicle turns less at higher
speeds for the same steering angle due to wheel
slippage, tire deflection,etc.). This model makes the
unrealistic assumption that acceleration of the steering
actuator is infinite, but it is a fair approximation.

A set of 20 m clothoid sequences is used to cover a
range of initial vehicle velocities and turning rates. An
example is shown in Figure 9. This figure highlights

(a) obstacles blocking paths, via cell-to-trajectory table

(b) least costly path found by searching the graph

Figure 8: (a) Local path planning first eliminates path
segments that are blocked by the obstacles in the vehicle-
centered map. (b) The least costly path is then found by
searching the path segments remaining in the graph.

Figure 9: An sample set of path segments: These path
segments are a complete set of 20 m paths given an initial
steering angle to the right. Additional path sets are
computed for several other initial steering angles. The
asymmetry is explained by the initial condition. The
paths labeled 10 m/s are feasible at speeds up to 10 m/s.
The paths labeled 7.5 m/s are the paths that are feasible
at speeds up to 7.5 m/s but not greater.
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the importance of modeling the limits of steering rate.
At 10 m/s, nearly one-third of the terminal points on
the 20 m radius and two-thirds of the points on the 10
m radius are unreachable given the initial steering
angle and the steering rate limit.

The set of segments feasible for 10 m/s travel is
assumed to be traversable at lower speeds as well. A
large space of trajectories can be considered in online
path selection with this method. Beyond 20 m,
segments to 50 m range are treated with straight line
approximations because the AM path will be replanned
before those segments are traversed.

Recall that only obstacle-free paths are searched
online because those blocked have already been
eliminated from consideration. Higher speed paths are
preferred to lower speed paths because they are
smoother and have more clearance. Clearance has
already been considered because the faster paths are
wider, as described in Section 3.2. Paths slower than
the vehicle’s current speed will not be considered
because the vehicle is traveling too fast to execute the
tight turns that are feasible only at lower speeds.

3.2 Speed-indexed clearance

Speed-indexed clearance solves two problems that
occurred when straight-line path segments where used
in the first attempts to drive at high speed. First, the
vehicle drove too close to obstacles at high speeds. The
vehicle would brush its mirrors and antenna mounts
against tree branches when it was driving fast as well
as slow. Not only did this behavior risk damaging
equipment on the vehicle, but also it left little room for
error.

The second problem was that the path would
sometimes become blocked when the vehicle was
driving closely around an obstacle near the path. This
could occur because new data showed the obstacle to
be larger than previously sensed, placing it within the
path safety margin. Another source of this problem
was that the vehicle-oriented map could move with the
vehicle such that the obstacle had expanded into a
previously clear cell. This could block all the vehicle’s
available paths when the vehicle was near the obstacle.
When the vehicle was far enough from the obstacle, a
sharper curve could be used at lower speed to take the
vehicle away from the obstacle. This problem would
also be lessened by adding cost to a path as a function
of its proximity to obstacles, rather than a binary
blockage function.

These problems are addressed in the present work
by increasing clearance requirements at higher vehicle
speeds. Lateral clearance of each path segment is
related to the segment’s speed. Each clothoidal path
segment’s width is increased by 0.8 m of additional
clearance (the width of two 0.4 m cells) for each step
increase in speed above the minimum 2.5 m/s. Path
width ranges from 3 m for 2.5 m/s paths to 5.4 m for
10 m/s paths. The straight-line segments from 20 m to

50 m are all considered to be traversable up to 10 m/s,
so they have the same 5.4 m width as the 10 m/s
clothoids. The concept is illustrated by Figure 10.

This policy is implemented by using speed-indexed
path segment widths in building the trajectory-to-cell
and cell-to-trajectory tables. The wider paths cover
more cells in the trajectory-to-cell table, and when the
mapping is inverted, more cells can block the path in
the cell-to-trajectory table. An obstacle in any cell
through which a trajectory passes will block that path
segment. This increases the clearance between the
vehicle and obstacles at higher vehicle speeds. Even if
higher-speed paths should become blocked as the
vehicle approaches an obstacle, there should be
enough clearance for lower-speed paths to remain
feasible, allowing the vehicle to proceed past the
obstacle.

A common approach that has similar results is to
grow obstacles rather than the vehicle path width. In
these cases, the vehicle may be treated as a point.
However, growing obstacles would have been a more
expensive online computation for us. By growing the
vehicle path width, the computation is performed
offline, and the online cost is embedded in the cost of
using the cell-to-trajectory table to eliminate paths
blocked by obstacles.

4 Conclusion
These techniques enabled the vehicle to travel over

rolling meadows at speeds up to 35 km/h (10 m/s)
while avoiding obstacles that were well within the

Figure 10: Speed-indexed path clearance concept is
illustrated approximately. At slower speeds, the vehicle
has liberty to veer more sharply to avoid obstacles.
Similarly, the vehicle is able to negotiate a narrower gap.
The path width associated with each path segment is
related to the speed at which the path would be driven.



vehicle’s current sensing capabilities, such as large
trees and shrubs. The vehicle had noa priori
knowledge of the obstacles.

The vehicle’s top speed of 10 m/s is limited by the
range, angular resolution, and update rate of the
LADAR. Large obstacles are reliably detected at
around 40 m, providing at most 4 s of advance
information about obstacles. In addition, latencies
associated with the LADAR’s 1 Hz scan rate, data
processing, and 4 Hz path planning further reduce the
lookahead to just over 3 s. Doubling the vehicle’s
speed would cut the lookahead to 1.5 s to 2 s. To
increase the lookahead, it would be necessary to detect
obstacles at greater ranges and reduce latencies (e.g.,
by increasing sensor update rates).

In general, it is probably desirable for the vehicle to
negotiate the terrain in addition to avoiding obstacles.
This emphasizes the notion that terrain is traversable at
some speed depending on its particular characteristics,
rather than assuming that terrain is smooth but dotted
with obstacles. This will require a more sophisticated
terrain analysis and planning model than the binary
model used presently. However, the more complex
model should enable the system to address another
challenge looming on the horizon. For many
applications, it is necessary to maneuver the vehicle in
tight quarters, in some cases even to the point of
driving through overhanging branches and pressing
through brush. It is hoped that a general solution could
address the entire spectrum from high speed driving
over varied terrains to maneuvering in tight quarters.
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